Fuzzy Logic = Computing with Words - Fuzzy Systems, IEEE Transactions on

نویسنده

  • Lotfi A Zadeh
چکیده

As its name suggests, computing with words (CW) is a methodology in which words are used in place of numbers for computing and reasoning. The point of this note is that fuzzy logic plays a pivotal role in CW and vice-versa. Thus, as an approximation, fuzzy logic may be equated to CW. There are two major imperatives for computing with words. First, computing with words is a necessity when the available information is too imprecise to justify the use of numbers, and second, when there is a tolerance for imprecision which can be exploited to achieve tractability, robustness, low solution cost, and better rapport with reality. Exploitation of the tolerance for imprecision is an issue of central importance in CW. In CW, a word is viewed as a label of a granule; that is, a fuzzy set of points drawn together by similarity, with the fuzzy set playing the role of a fuzzy constraint on a variable. The premises are assumed to be expressed as propositions in a natural language. For purposes of computation, the propositions are expressed as canonical forms which serve to place in evidence the fuzzy constraints that are implicit in the premises. Then, the rules of inference in fuzzy logic are employed to propagate the constraints from premises to conclusions. At this juncture, the techniques of computing with words underlie-in one way or another-almost all applications of fuzzy logic. In coming years, computing with words is likely to evolve into a basic methodology in its own right with wide-ranging ramifications on both basic and applied levels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A robust fuzzy logic controller for robot manipulators with uncertainties

Owing to load variation and unmodeled dynamics, a robot manipulator can be classified as a nonlinear dynamic system with structured and unstructured uncertainties. In this paper, the stability and robustness of a class of the fuzzy logic control (FLC) is investigated and a robust FLC is proposed for a robot manipulator with uncertainties. In order to show the performance of the proposed control...

متن کامل

A robust stabilization problem of fuzzy control systems and its application to backing up control of a truck-trailer

1 An approach to fuzzy control of nonlinear systems: Stability and design issues Wang, HO; Tanaka, K; Griffin, MF IEEE TRANSACTIONS ON FUZZY SYSTEMS 1029 STABILITY ANALYSIS AND DESIGN OF FUZZY CONTROL-SYSTEMS TANAKA, K; SUGENO, M FUZZY SETS AND SYSTEMS 1013 Fuzzy regulators and fuzzy observers: Relaxed stability conditions and LMI-based designs Tanaka, K; Ikeda, T; Wang, HO IEEE TRANSACTIONS ON...

متن کامل

Neural and fuzzy robotic hand control

An efficient first grasp for a wheelchair robotic arm-hand with pressure sensing is determined and presented. The grasp is learned by combining the advantages of neural networks and fuzzy logic into a hybrid control algorithm which learns from its tip and slip control experiences. Neurofuzzy modifications are outlined, and basic steps are demonstrated in preparation for physical implementation....

متن کامل

Indirect Adaptive Interval Type-2 Fuzzy PI Sliding Mode Control for a Class of Uncertain Nonlinear Systems

Controller design remains an elusive and challenging problem foruncertain nonlinear dynamics. Interval type-2 fuzzy logic systems (IT2FLS) incomparison with type-1 fuzzy logic systems claim to effectively handle systemuncertainties especially in the presence of disturbances and noises, but lack aformal mechanism to guarantee performance. In contrast, adaptive sliding modecontrol (ASMC) provides...

متن کامل

Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps

A neural network architecture is introduced for incremental supervised learning of recognition categories and multidimensional maps in response to arbitrary sequences of analog or binary input vectors, which may represent fuzzy or crisp sets of features. The architecture, called fuzzy ARTMAP, achieves a synthesis of fuzzy logic and adaptive resonance theory (ART) neural networks by exploiting a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009